quarta-feira, 29 de julho de 2020

TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Em física computacional e química computacional, o método de Hartree–Fock (HF) é um método aproximativo para determinar a função de onda e a energia de um problema de muitos corpos de um estado estacionário.
O método de Hartree-Fock frequentemente considera que a função de onda de N corpos de um sistema pode ser aproximada por um único determinante de Slater (no caso de muitas partículas serem férmions) ou um permanent (no caso dos bósons) para N orbitais de spins. Utilizando o método variacional, pode-se derivar um conjunto de "N" equações acopladas para "N" orbitais de spins. Uma solução destas equações produz a função de onda de Hartree-Fock e dá a energia do sistema.
Na literatura o método de Hartree-Fock é chamado de método de campo autoconsistente. Ao deduzir o que hoje é chamada de equação de Hartree, como uma solução aproximada da equação de Schrödinger, Douglas Hartree exigiu que o campo final calculado a partir da distribuição de carga fosse autoconsistente com o campo considerado inicialmente. Assim, sua autoconsistência é uma exigência da solução. As soluções para as equações não lineares de Hartree-Fock também se comportam como se cada partícula fosse submetida ao campo médio criado por todas as outras partículas (operador de Hartree-Fock). As equações são universalmente resolvidas por meio de um método iterativo, embora o algoritmo de ponto fixo nem sempre convirja.[1] Este tipo de solução não é a única possível e também não é uma característica essencial do método Hartree-Fock.
O método de Hartree-Fock encontra suas aplicações nas soluções da equação de Schrödinger para átomosmoléculasnanoestruturas[2] e em sólidos, mas também é usado em física nuclear. (Ver Hartree–Fock–Bogoliubov method para uma discussão da aplicação em física nuclear). Na teoria de estrutura atômica os cálculos devem ser feitos para um espectro de energia com muitos estados excitados. Desse modo o método de Hartree-Fock para átomos considera que a função de onda é uma única função de estado para a configuração atômica, com números quânticos bem definidos e que o nível de energia não é necessariamente o estado fundamental.
Para ambos átomos e moléculas, o método de Hartree-Fock é o ponto de partida para vários métodos de solução que descrevem precisamente o problema de muitos corpos.
O restante deste artigo se concentrará em aplicações da teoria da estrutura eletrônica adequada para moléculas, com o átomo como um caso especial. As discussões aqui são somente restritas ao método de Hartree-Fock, onde o átomo ou a molécula está em uma casca fechada com todos os orbitais (atômicos e molecular) duplamente ocupados. Os sistemas tipo casca aberta, onde alguns dos elétrons não estão emparelhados, podem ser tratados por um dos dois métodos de Hartree-Fock:
  • Hartree-Fock de concha aberta restrita Restricted open-shell Hartree–Fock (ROHF)
  • Hartree-Fock irrestrito Unrestricted Hartree–Fock (UHF)


Uma breve história[editar | editar código-fonte]

A origem do método de Hartree-Fock data do começo de 1920, logo após a descoberta da Equação de Schrödinger em 1926. Em 1927 Douglas Hartree introduziu o procedimento, que foi chamado de método do campo autoconsistente, para calcular aproximações para função de onda e energia para átomos e íons. Hartree foi guiado por alguns métodos anteriores, semi-empíricos, do início da década de 1920 (por E. Fues, R. B. Lindsay, e ele mesmo) de acordo com a Antiga teoria quântica de Niels Bohr.
No Modelo de Bohr do átomo, a energia do estado com número quântico n é dada em unidades atômicas . Observou-se então, a partir dos espectros atômicos, que os níveis de energia de átomos com muitos elétrons são bem descritos, aplicando uma versão modificada da fórmula de Bohr. Introduzindo o quantum defect d como parâmetro empírico, os níveis de energia de um átomo genérico são dados aproximadamente pela fórmula quantum defect, no sentido de que se pode reproduzir razoavelmente os níveis observados nas regiões de transição Raios X (veja a discussão empírica em Lei de Moseley). A existência de um quantum defect não zero foi atribuído à repulsão elétron elétron, que claramante não existe em um átomo de hidrogênio isolado. Essa repulsão é resultado screening effect da carga nuclear nua. Os primeiros pesquisadores mais tarde introduziram outros potenciais que continham parâmetros empíricos adicionais, com a esperança de reproduzir os dados experimentais.
Hartree procurou acabar com parâmetros empíricos e resolver a equação de Schrödinger independente do tempo de muitos-corpos a partir de princípios físicos fundamentais. Seu primeiro método de solução proposto ficou conhecido como Método de Hartree. Entretanto, muitos dos contemporâneos de Hartree não entenderam o raciocínio físico por trás do Método de Hartree. Para muitos sua conexão com a solução da equação de Schrödinger de muitos-corpos não estava clara. No entanto, em 1928 John C. Slater e J. A. Gaunt mostraram, independentemente, que o método de Hartree poderia ser formulado numa base teórica mais precisa, aplicando o princípio variacional a uma ansatz (função de onda de ensaio) como um produto de funções de partícula única.
Em 1930 Slater e Vladimir Fock, independentemente, apontaram que o método de Hartree não respeitava o princípio de função de onda para partículas idênticas. O método de Hartree usava o princípio de exclusão de Pauli em sua formulação mais velha, proibindo a presença de dois elétrons no mesmo estado quântico. No entanto, este método foi mostrado fundamentalmente incompleto, pois negligenciava a estatística quântica.
Foi então mostrado que um Determinante de Slater, um Determinante de orbitais de partícula única usados pela primeira vez por Heisenberg e Dirac em 1926, satisfez trivialmente as propriedades de Partículas idênticas da solução exata. E Portanto, era adequado usar um ansatz para aplicar o princípio variacional. O método de Hartree original pode então ser visto como uma aproximação ao método de Hartree-Fock negligenciando partículas idênticas. O método original de Fock se baseava fortemente na Teoria dos grupos, e era muito abstrato para os físicos contemporâneos entenderem e implementarem. Em 1935 Hartree reformulou o método para facilitar os cálculos.
O método de Hartree-Fock, apesar de fisicamente mais preciso, foi pouco usado até o advento dos computadores eletrônicos na década de 1950. Isso se deveu às demandas computacionais muito grandes do método Hartree e seus modelos empíricos. Inicialmente, tanto o método Hartree como o método Hartree-Fock foram aplicados exclusivamente a átomos, onde a simetria esférica do sistema permitiu simplificar bastante o problema. Esses métodos aproximados foram (e são) freqüentemente usados em conjunto com a aproximação de campo central, para que os elétrons na mesma casca tenham a mesma parte radial, e para restringir a solução variacional para serem autofunções do spin. Mesmo assim as soluções à mão para as equações de Hartree-Fock de um átomo de tamanho médio eram muito difíceis. E para pequenas moléculas elas requeriam recursos computacionais muito além do que estava disponível antes de 1950.

O algoritimo de Hartree-Fock[editar | editar código-fonte]

O método de Hartree-Fock é tipicamente usado para resolver a equação de Schrödinger independente do tempo para um átomo ou molécula de múltiplos elétrons como descrito na aproximação de Born-Oppenheimer. Como não há soluções conhecidas para sistemas de muitos elétrons (existem soluções para sistemas de um elétron como o átomo de hidrogênio), o problema é resolvido numericamente. Devido a não linearidade introduzida pela aproximação de Hartree-Fock, as equações são resolvidas usando um método não-linear como o de Iteração, que dá origem ao nome método do campo autoconsistente [3].

Aproximações[editar | editar código-fonte]

O método de Hartree-Fock faz cinco simplificações principais, são elas:
  • Aproximação de Born-Oppenheimer é utilizada. A função total da molécula é na verdade uma função das coordenadas de cada um dos núcleos, além da coordenada dos elétrons [3].
  • Tipicamente os efeitos da relatividade especial são completamente negligenciados. O operador Momento é tido como não relativístico.
  • A solução variacional é uma combinação linear de um número finito de funções de base, que normalmente são (mas nem sempre) escolhidas para serem ortogonais. O conjunto de base finita é assumido como sendo aproximadamente completo.
  • Considera-se que cada auto-função da energia é descrita por um único determinante de Slater, um produto antisimétrico da funções de onda do elétron.
  • A teoria do campo médio ou aproximação de campo médio, está implícita. Os efeitos decorrentes desses desvios, pressupõe que as correlações dos elétrons são completamente negligenciadas para os elétrons com spins opostos, mas são levados em conta para elétrons com spins paralelos. [4][5] (Electron correlation should not be confused with electron exchange, which is fully accounted for in the Hartree–Fock method.) [3][5]
Greatly simplified algorithmic flowchart illustrating the Hartree–Fock method

Otimização variacional dos orbitais[editar | editar código-fonte]

O método variacional mostra que para um operador Hamiltoniano independente do tempo, qualquer função de onda irá ter o valor esperado da energia, maior ou igual a energia do verdadeiro estado fundamental, dada pela função de onda do Hamiltonia fornecido. Devido a isso, a energia de Hartree-Fock é superior à verdadeira energia de estado fundamental de uma determinada molécula. No contexto do método de Hartree-Fock, a melhor possibilidade de solução é o Limite de Hartree-Fock, que é o limite em que a energia de Hartree-Fock se aproxima de uma base ortonormal (A outra é a configuração de iteração, onde as duas últimas aproximações do método de Hartree-Fock como descritas acima são desfeitas. Somente quando ambos os limites são alcançados que a solução exata, até a aproximação de Born-Oppenheimer, é obtida.). A energia de Hartree-Fock é a energia mínima de um único determinante de Slater.
O ponto de partida para o método de Hartree-Fock é um conjunto aproximado de funções de onda de um elétron conhecidas como spin-orbital. Para um cálculo orbital atômico, estes são tipicamente os orbitais de um átomo hidrogênio (um átomo com apenas um elétron, mas a carga nuclear apropriada). Para o cálculo do orbital molecular ou cristalino, as funções de onda de um elétron são tipicamente uma combinação linear de orbitais atômicos.
Os orbitais descritos acima apenas representam de maneira mediana a presença dos elétrons. No método de Hartree-Fock, o efeito dos muitos elétrons é contabilizado através da teoria de campo médio. Os orbitais são otimizados, exigindo que eles minimizem a energia do determinante de Slater. As condições variacionais resultantes nos orbitais levam a um novo operador de um elétron, chamado o operador Fock. Os orbitais ocupados são autosoluções do operador Fock, através de transformações unitárias entre si. O operador Fock é um eficiente operador Hamiltoniano de um elétron, sendo a soma de dois termos. O primeiro é uma soma de operadores da energia cinética para cada elétron, energia de repulsão internuclear, e da soma dos termos de atração eletrônica-nuclear Lei de Coulomb. O segundo são os termos Coulombianos de repulsão entre elétrons, descritos através da teoria de campo médio. É então calculada uma energia de repulsão líquida para cada elétron do sistema, tratando todos os elétrons dentro da molécula como uma distribuição suave de carga negativa. Essa é uma simplificação inerente ao método Hartree-Fock, e é equivalente à quinta simplificação da lista acima.
Desde que o operador Fock dependa dos orbitais usados para construir a matriz de Fock, as autofunções do operador Fock são, por sua vez, novos orbitais que podem ser usados para construir um novo operador Fock. Desta forma, os orbitais de Hartree-Fock são otimizados iterativamente até que a mudança na energia eletrônica total caia abaixo de um limiar predefinido. Dessa forma, um conjunto de orbitais autoconsistentes de um elétron são calculados. A função de onda eletrônica de Hartree-Fock é então dada pelo determinante de Slater construído fora destes orbitals. Seguindo os postulados da mecânica quântica, a função de onda de Hartree-Fock pode então ser usada para calcular qualquer propriedade química ou física desejada, dentro da estrutura do método de Hartree-Fock.

Formulação matemática[editar | editar código-fonte]

O operador de Fock[editar | editar código-fonte]

Como o termo de repulsão elétron elétron do Hamiltoniano molecular envolve as coordenadas de dois elétrons diferentes, é necessário reformulá-lo de forma aproximada. Para esta aproximação, todos os termos do Hamiltoniano exato, exceto o termo de repulsão nuclear, são reescritos como a soma dos operadores de um elétron para átomos ou moléculas em uma casca fechada (com dois elétrons em cada orbital).[6] O "(1)" de cada símbolo de operador, indica que o operador é de um único elétron na natureza.
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É o operador de Fock para um elétron gerado pelos orbitais ,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É o núcleo do Hamiltoniano de um elétron,
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde o operador de Coulomb define a energia de repulsão elétron elétron devido a cada um dos dois elétrons j no enésimo orbital.[6]
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


É o operador de troca, que define a energia de troca dos elétrons devido a antisimetrização da função de onda de todos os n elétrons.[6] Onde o perador "Troca de energia", K, é obtido através do determinante de Slater. Então para encontrar as funções de onda de um elétron pelo método de Hartree-Fock, é equivalente a resolver as equações das autofunções:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde  são um conjunto de funções de onda um elétron, chamadas de orbitais moleculares de Hartree-Fock.




A teoria orbital de Rutherford encontrou uma dificuldade teórica resolvida por Niels Bohr.
  • No momento em que temos uma carga elétrica negativa composta pelos elétrons girando ao redor de um núcleo de carga positiva, este movimento gera uma perda de energia devido a emissão de radiação constante. Num dado momento, os elétrons vão se aproximar do núcleo num movimento em espiral e cair sobre si.
Em 1911, Niels Bohr publicou uma tese que demonstrava o comportamento eletrônico dos metais. Na mesma época, foi trabalhar com Ernest Rutherford em ManchesterInglaterra. Lá obteve os dados precisos do modelo atômico, que iriam lhe ajudar posteriormente.
Em 1913, observando as dificuldades do modelo de Rutherford, Bohr intensificou suas pesquisas visando uma solução teórica.
Em 1916, Niels Bohr retornou para Copenhague para atuar como professor de física. Continuando suas pesquisas sobre o modelo atômico de Rutherford.
Em 1920, nomeado diretor do Instituto de Física Teórica, Bohr acabou desenvolvendo um modelo atômico que unificava a teoria atômica de Rutherford e a teoria da mecânica quântica de Max Planck.
Sua teoria consistia que ao girar em torno de um núcleo central, os elétrons deveriam girar em órbitas específicas com níveis energizados. Realizando estudos nos elementos químicos com mais de dois elétrons, concluiu que se tratava de uma organização bem definida em orbitais. Descobriu ainda que as propriedades químicas dos elementos eram determinadas pelo orbital mais externo. Louis Victor Pierre Raymondi (sétimo duque de Broglie), onde todo corpúsculo atômico pode comportar-se de duas formas, como onda e como partícula.
Bohr propôs os seguintes postulados:
1. Um electrão num átomo move-se numa órbita circular em torno do núcleo sob a influência da força de Coulomb entre o electrão e o núcleo.
2. Um electrão move-se em uma órbita para a qual o seu momento angular orbital,  , é um múltiplo inteiro de .
3. Um electrão, movendo-se numa órbita permitida, não irradia energia electromagnética. Assim, sua energia total E permanece constante.
4. Radiação electromagnética é emitida se um electrão, inicialmente movendo-se em uma órbita de energia total  descontinuamente altera o seu movimento para que ele se possa mover em uma órbita de energia total .
A frequência da radiação emitida v é igual à quantidade
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS





Transição de Níveis de Energia[editar | editar código-fonte]

Ocorre emissão de fóton quando o elétron vai de um nível mais energético para um menos energético
Ocorre absorção de fóton quando o elétron vai de um nível menos energético para um mais energético
Elétrons em átomos e moléculas podem trocar (fazer transição) de níveis de energia ao emitirem ou absorverem um fóton, ou radiação eletromagnética, tal energia deve ser exatamente igual à diferença energética entre os dois níveis. Elétrons podem também ser completamente removidos de uma espécie química, como um átomo, molécula, ou íon. A remoção completa de um elétron de um átomo pode ser uma forma de ionização, que é efetivamente mover o elétron para um orbital com um número quântico principal infinito, tão longe de forma a praticamente não ter efeito algum sobre o átomo remanescente (íon). Para vários tipos de átomos, existem a 1ª, 2ª, 3ª energia de ionização e assim por diante, que podem ser fornecidas ao átomo em estado fundamental para remover elétrons do menor ao maior nível de energia. Energia em quantidades opostas também pode ser liberada, muitas vezes em forma de energia fotoelétrica, quando elétrons entram em contato com ións positivamente carregados (ou átomos). Moléculas também podem passar por transições em seus níveis de energia vibracionais e rotacionais. A transição de nível de energia também pode ser não-radioativa, significando que não ocorre a emissão ou absorção de um fóton.
Se um átomo, íon ou molécula está no menor nível de energia possível, ele e seus elétrons são ditos em estado fundamental. Se estão no maior nível de energia, são ditos excitados, ou qualquer elétron possui uma energia maior que o estado fundamental está excitado. Tal espécie pode ser excitada a um nível de energia maior ao absorver um fóton cuja energia é igual a diferença de energia entre dois níveis. Por outro lado, uma espécie pode ir para um nível de energia inferior ao emitir espontaneamente um fóton com energia igual a diferença energética. A energia de um fóton é igual à constante de Planck (h) vezes a sua frequência (f) e, portanto, é diretamente proporcional à sua frequência, ou inversamente proporcional ao seu comprimento de onda (λ).
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde c, velocidade da luz, é igual a .[3]




Existem quatro números quânticos:
Estes quatro números quânticos, além de se complementarem, nos permitem fazer uma descrição completa dos elétrons nos átomos, pois eles dizem o nível principal de energia do elétron, o subnível de energia, a orientação espacial da nuvem eletrônica e a orientação do próprio elétron na nuvem. Cada combinação dos quatro números quânticos é única para um elétron.
Os primeiros três números quânticos são usados para descrever orbitais atômicos e a caracterização dos elétrons que neles se encontram. O quarto número quântico, número quântico de spin é utilizado na descrição do comportamento específico de cada elétron. Assim, qualquer par de elétrons pode ter até três números quânticos iguais sendo que, neste caso, necessariamente, o quarto número quântico deverá ser diferente, ou seja, este par de elétrons estará ocupando o mesmo orbital sendo que os elétrons apresentam spins opostos.

Número quântico principal, n[editar | editar código-fonte]

número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a energia do átomo de hidrogênio (e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde m e e são a massa dos nêutrons e a carga do elétronε0 é a permissividade do vácuo, e h é a constante de Planck. Esta equação foi obtida como resultado da equação de Schrodinger e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.




determinante de Slater é uma técnica matemática da mecânica quântica que se usa para gerar funções de onda antissimétricas que descrevam os estados colectivos de vários fermiões e que cumpram o princípio de exclusão de Pauli.
Este tipo de determinantes foram nomeados em referência a John C. Slaterfísico e químico teórico americano.

Duas partículas[editar | editar código-fonte]

Para ilustrar o seu funcionamento pode-se considerar o caso mais simples: o de duas partículas. Se  e  são as coordenadas da partícula 1 e da partícula 2 respectivamente, pode-se gerar a função de ondas colectiva  como produto das funções de onda individuais de cada partícula. Quer dizer:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Esta expressão é conhecida como o produto de Hartree. De facto, este tipo de função de ondas não é válido para a representação de estados colectivos de fermiões já que esta função de ondas não é antissimétrica ante um intercâmbio de partículas. A função deve satisfazer a seguinte condição

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



O produto de Hartree não satisfaz o princípio de Pauli. Este problema poderá ser resolvido se tivermos em conta a combinação linear de ambos os produtos de Hartree

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



onde foi incluído o fator (1/√2) para que a função de ondas esteja normalizada convenientemente. Esta última equação pode ser reescrita como um determinante, da seguinte forma:

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



conhecido como determinante de Slater das funções  e . As funções assim geradas têm a propriedade de anular-se si duas das funções de onda de uma partícula forem igual ou, o que é equivalente, dois dos fermiões estejam no mesmo estado quântico. Isto é equivalente a satisfazer o princípio de exclusão de Pauli.

Generalização a  partículas[editar | editar código-fonte]

Esta expressão pode ser generalizada sem grande dificuldade a qualquer número de fermiões. Para um sistema composto por  fermiões, define-se o determinante de Slater como

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O uso do determinante como gerador da função de ondas garante a antissimetríca com respeito ao intercâmbio de partículas, assim como a impossibilidade de que duas partículas estejam no mesmo estado quântico, aspecto crucial ao se tratar com fermiões.
No método de Hartree-Fock, um único determinante de Slater usa-se como aproximação à função de ondas electrónica. Em métodos de cálculo mais precisos, tais como a interacção de configuração ou o MCSCF, utilizam-se sobreposições lineares de determinantes de Slater.




Modelo de CGHS

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa
modelo de Callan-Giddings-Harvey-Strominger ou modelo de CGHS, em resumo, é um modelo de brinquedo (modelo toy) da relatividade geral em um espaço e uma dimensão de tempo.
A relatividade geral é um modelo altamente não-linear, e como tal, a sua versão 3+1D geralmente é muito complicada de se analisar em detalhe. Na versão 3+1D e superiores, que se propagam em ondas gravitacionais, mas elas não existem em 2+1D ou 1+1D. Em 2+1D, a relatividade geral torna-se uma teoria de campo topológica[1] sem graus de liberdade locais, e todos os modelos 1+1D são nível locais planos. No entanto, uma generalização um pouco mais complexa da relatividade geral, que inclui dilatons transformará o modelo de 2+1D em um misto admitindo dilaton de gravidade-onda que se propagam , além de fazer o modelo 1+1D geometricamente não trivial nível localmente.[2][3][4]

Ação[editar | editar código-fonte]

Uma muito específica escolha de conexões e interações leva ao modelo CGHS.

X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde g é o tensor métricoφ é o campo dilatonfi são os campos de matéria, e λ2 é a constante cosmológica. Em particular, a constante cosmológica é diferente de zero, e os campos de matéria sem massa são escalares reais.